
brain
sciences

Review

Regulation of Reactive Oxygen Species-Mediated
Damage in the Pathogenesis of Schizophrenia

Samskruthi Madireddy 1,* and Sahithi Madireddy 2

1 Independent Researcher, 1353 Tanaka Drive, San Jose, CA 95131, USA
2 Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA;

sahithim@mit.edu
* Correspondence: samskruthi.madireddy@gmail.com; Tel.: +1-408-9214162

Received: 4 September 2020; Accepted: 15 October 2020; Published: 16 October 2020
����������
�������

Abstract: The biochemical integrity of the brain is paramount to the function of the central nervous
system, and oxidative stress is a key contributor to cerebral biochemical impairment. Oxidative stress,
which occurs when an imbalance arises between the production of reactive oxygen species (ROS) and
the efficacy of the antioxidant defense mechanism, is believed to play a role in the pathophysiology of
various brain disorders. One such disorder, schizophrenia, not only causes lifelong disability but also
induces severe emotional distress; however, because of its onset in early adolescence or adulthood
and its progressive development, consuming natural antioxidant products may help regulate the
pathogenesis of schizophrenia. Therefore, elucidating the functions of ROS and dietary antioxidants
in the pathogenesis of schizophrenia could help formulate improved therapeutic strategies for its
prevention and treatment. This review focuses specifically on the roles of ROS and oxidative damage
in the pathophysiology of schizophrenia, as well as the effects of nutrition, antipsychotic use, cognitive
therapies, and quality of life on patients with schizophrenia. By improving our understanding of the
effects of various nutrients on schizophrenia, it may become possible to develop nutritional strategies
and supplements to treat the disorder, alleviate its symptoms, and facilitate long-term recovery.
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1. Introduction

As the most metabolically active part of the human body, the brain generates many reactive oxygen
species (ROS), which can cause oxidative stress (OS) when excessively produced or inadequately
removed [1–3]. This, in turn, can lead to neural cell damage [4,5]. Given that high oxidation activity
must be balanced with antioxidant activity in the brain, it is an organ prone to oxidation-related
damage [6–8]. Such OS is a potential factor in brain deterioration and loss of gray matter, which lead
to issues with cognition and daily functioning [9–12]; furthermore, OS has been associated with
a plethora of psychiatric disorders [13–17]. One such disorder, schizophrenia is characterized by
emotional, cognitive, and behavioral disturbances, as well as inaccurate perceptions of reality and high
mortality and morbidity [18–22]. Understanding the etiology and pathophysiology of schizophrenia
is a prerequisite for developing more effective treatments. To date, the factors implicated in the
development of schizophrenia include excessive free radicals and impaired antioxidant defense [5,23].
As such, a diet rich in antioxidants has been suggested as a promising strategy for slowing the
progression of the disorder [24,25].

This review specifically focuses on the role of ROS-mediated oxidative damage in the
pathophysiology of schizophrenia. In addition, current knowledge on treating schizophrenia
with antioxidants is presented, along with information on how antioxidant levels in patients with
schizophrenia may be regulated by nutritional, pharmacological, and lifestyle factors. Because
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schizophrenia is a progressive disorder from its onset in adolescence or early adulthood [10,26–28],
the intake of natural antioxidants may help regulate its development [29].

2. Schizophrenia

Schizophrenia is a severe mental disorder characterized by frequent relapses, cognitive
impairment [30–32], and emotional and functional disability [33–35]. Compared to healthy controls,
patients with schizophrenia have lower total brain, gray matter, and white matter volumes and
densities; on the other hand, schizophrenia patients have significantly higher third and lateral ventricle
volumes [36,37]. Brain abnormalities in the amygdala, cerebellum, basal ganglia, corpus callosum,
inferior parietal lobule, medial temporal lobe, superior temporal gyrus, prefrontal cortical areas,
and thalamus have also been found in postmortem studies of individuals with the disorder [38,39].
The symptoms of schizophrenia are classified as positive, such as hallucinations and delusions, and
negative, such as social withdrawal and flat affect [40–45]. Cognitive deficits, including the impairment
of attention, memory, and executive function, are also hallmarks of schizophrenia; they present from the
prodromal phase of the disorder before psychotic symptoms fully intensify [28,46,47]. Such cognitive
decline can present at an early age among those with schizophrenia, eventually leading to self-care
issues and impaired social and occupational function [28,48,49]. Moreover, patients with schizophrenia
often report anxiety, depression, obsessive behavior, substance abuse, and suicidal ideation. Given
these symptoms, schizophrenia has a high social impact [26].

3. Oxidative Stress

As the brain requires high levels of oxygen to function normally, it is known to be a major repository
of free radicals and ROS as well as a high-risk area for neurodegeneration [15,50–52]. OS takes place
when an imbalance arises between antioxidants and oxidants [53–55]. Free radicals display at least
one unpaired electron and are intermediate in reducing oxygen to water [56]. Continuous reduction
of oxygen causes the generation of ROS [15,57] (Figure 1). This imbalance may be attributable to a
malfunctioning antioxidant system and/or high levels of ROS including superoxide anion radicals
(O2

•), hydroxyl radicals (HO•), peroxyl radicals (HOO•), hydrogen peroxide (H2O2), nitric oxide,
and reactive nitrogen species [58–61].
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(HOO•), and hydrogen peroxide (H2O2). The red circle indicates an unpaired electron.

O2− is central to the formation of ROS; superoxide dismutases (SOD) can transform O2− into
the more stable H2O2 [62] (Figure 2). H2O2 can subsequently form highly reactive ·OH radicals
through the Fenton reaction using Fe2+ as a catalyst [63]. These ·OH radicals are among the most
cytotoxic and reactive ROS [64]. Conversely, H2O2 may be decomposed to water and O2 by catalase
and peroxidases, such as glutathione peroxidase [65]. In the short-term, OS helps eradicate pathogens
as part of the immune response [55]; however, severe OS caused by a major imbalance in antioxidants
and oxidants causes cell damage [66–68]. ROS can be similarly beneficial, playing a role in modulating
inflammation [2,69–71]; however, by modifying lipids, proteins, nucleic acids, and other molecules,
excess ROS can also be damaging [61,72,73]. In particular, increased ROS may lead to lipid peroxidation,
which damages cells and organelle membranes [74,75]. Furthermore, surplus ROS can also facilitate
mutagenesis by causing purine oxidation, strand breaks in DNA, and cross-linking of proteins and DNA;
it may also induce chromatin structure changes that can epigenetically modify gene expression [6,76,77].
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Figure 2. ROS generation. The superoxide is generated from oxygen in the mitochondrial respiration
chain, which can be further converted into hydrogen peroxide via superoxide dismutase. The hydrogen
peroxide can be transformed to hydroxyl radicals and hydroxyl anions.

4. Mitochondrial ROS Production

Mitochondria are responsible for cellular processes, such as energy production, cell death,
and signaling [78]. They produce 90% of endogenous ROS due to leakage in electron transfer
that continuously generates O2

− [79,80]. Mitochondria maintain an efficient antioxidant system to
control ROS levels [63]. These levels fluctuate rapidly in mitochondria and are involved in normal
cellular signaling [81]. Thus, alterations in mitochondrial redox balance due to toxins, chronic
ischemia, or mutation may cause disease due to oxidative stress [81]. Neurons are particularly
vulnerable to OS from ROS overproduction and deficient antioxidant responses [81]. These cells are
long-lived and do not undergo mitosis. Consequently, OS that leads to mitochondrial dysfunction
and eventual cell death results in loss of neuronal function [82]. Mitochondria and ROS are significant
in determining how cells respond to disruption in homeostasis by stressors such as infection and
metabolic changes [83]. Mitochondrial dysfunction in schizophrenia alters redox balance and produces
low-grade inflammation [6]. Genetic, biochemical, and anatomical studies all provide evidence that
mitochondrial dysfunction plays a role in schizophrenia [84]. Such abnormalities vary with symptoms,
treatment status, and treatment response [84].

5. Association between Oxidative Stress and Schizophrenia

An accumulation of evidence indicates that the pathophysiology of schizophrenia is partially
attributable to heightened OS [85–90]. Evidence of higher lipid peroxidation levels, changes in
plasma antioxidant levels, and alterations in antioxidant enzyme activity have also been found
in schizophrenia patients [91]. The oxidative imbalance in schizophrenia patients has been
demonstrated through protein carbonylation, lipid peroxidation, and higher 8-hydroxydeoxyguanosine
levels indicating cell death and DNA damage [10,75,92,93]. Heightened OS in those with
schizophrenia can occur through disruptions to the antioxidant enzymes catalase, superoxide
dismutase (SOD), glutathione, and glutathione peroxidase (GPx), [94–100], as well as via increased
levels of the lipid peroxidation products malondialdehyde (MDA) and thiobarbituric acid reactive
substances [23,85,101], and lower antioxidant levels in the cerebrospinal fluid, red blood cells, serum,
and plasma [102,103]. ROS generation can also increase with schizophrenia; this has been attributed to
dopamine autooxidation, mitochondrial dysfunction, and the prooxidant effects of some antipsychotic
medications [104–106]. Mitochondrial dysfunction, which is also associated with OS, has been linked
to neurodegeneration in schizophrenia [107–109]. Indeed, neurons are particularly vulnerable to excess
ROS because of their high metabolism, plentiful fatty acids (for peroxidation), decreased antioxidant
levels, reduced regenerative capabilities, and high transition metal concentrations that catalyze
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hydroxyl radical formation [2,15,53,110]. Given this evidence, OS could function as a biomarker for
schizophrenia, indicating the pathophysiology, etiology, symptomatology, and treatment response of
the disorder, and could potentially predict the progression of symptoms towards psychosis [111–113].

Increased oxidant activity and decreased antioxidant activity have been reported in patients with
schizophrenia [107]. In a meta-analysis, researchers evaluated the evidence of OS from peripheral
measures during the various clinical phases of schizophrenia [114]. A cross-sectional study comprising
of 42 healthy individuals and 42 schizophrenia cases measured the total antioxidant capacity and
the prooxidant antioxidant balance (which combines the prooxidant load and antioxidant capacity
within one measurement) in the serum of participants; the latter value was observed to be elevated in
schizophrenia patients, which indicates the prevalence of OS in the progression of schizophrenia [102].
In addition, lower antioxidant capacity indicates that schizophrenia patients may be more vulnerable
to OS damage [8,102]. In another study, the relationship between SOD activity and thiobarbituric
acid reactive substances in the platelets of 36 schizophrenia patients (aged 18–36) was examined in
comparison to 32 healthy controls; lower antioxidative processes were observed in schizophrenia
patients as well as an imbalance between prooxidants and antioxidants [115]. Furthermore, SOD
activity was significantly reduced in the platelets of the patients with schizophrenia compared with
the healthy controls [115]. Along with impeded antioxidant enzyme activity, numerous studies have
associated decreased plasma total antioxidant status with schizophrenia [116–118]. For example,
in a study of 50 participants with schizophrenia (aged 18–60) and 50 controls matched for age and sex,
blood samples were collected to determine SOD, MDA, glutathione, and GPx levels; schizophrenia
patients had significantly lower levels of SOD and GPx, but higher levels of MDA than controls,
indicating increased OS [119]. Overall, evidence suggests that OS occurs in schizophrenia with an
imbalance in the antioxidant defense mechanism and antioxidant enzyme impairment [120,121].

6. Oxidative Damage in Schizophrenia

Postmortem brains and peripheral tissues from patients with schizophrenia show evidence of
OS [26], which is often the result of ROS-induced damage to macromolecules such as lipids, proteins,
nucleic acids, and polysaccharides [122,123]. Studies of OS in schizophrenia have indicated the
heightened oxidative damage caused by increased prooxidants and reduced antioxidants [5,124].
OS-induced damage to macromolecules ultimately affects cell damage, which is a likely factor in
schizophrenia. In addition, patients with schizophrenia have been found to have weaker antioxidant
defenses in their cerebrospinal fluid, peripheral blood [5,125], and postmortem brain tissue [28].
Evidence from genetic studies also suggests that these patients likely have a decreased capacity for
staging a sufficient antioxidant defense response [28]. Furthermore, reports of abnormal plasma,
serum, and red blood cell OS parameters also indicate that those with schizophrenia have a deficient
antioxidant defense [114,126]. The inability of antioxidant defense mechanisms to combat free-radical
production results in damage to cell membranes, has an adverse effect on neurotransmission [127,128],
and contributes to the symptoms of schizophrenia [28,129]. Specifically, several studies have reported
high nitric oxide and MDA levels, both important markers of OS, as well as reduced antioxidant
glutathione levels in patients with schizophrenia [5,99,117,130]. The effects of increased cell damage and
OS have also been implicated in the development of schizophrenia [131–133]. For example, in a study
of 64 patients with schizophrenia and 80 healthy controls, in which 8-hydroxydeoxyguanosine levels,
total antioxidant status, and total oxidant status were measured in plasma, OS was found to play a
role in schizophrenia pathogenesis through disease damage [134]. Although reduced total antioxidant
status has been observed in schizophrenia patients in several other studies, again indicating the link
between the disorder and OS, similar differences have not been observed for oxidative damage of
DNA [135].
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7. Positive Effects of Nutraceuticals and Antioxidants on Schizophrenia

Given that OS-induced cell damage and the exacerbation schizophrenia symptoms can at least in
part be attributed to the impairment of the antioxidant defense system [136,137], strengthening this
system and scavenging free radicals by employing endogenous and exogenous antioxidants could
potentially reduce the effects of OS [138–140]. Enzymes such as catalase, GPx, and SOD, along with
vitamins E and C, are typically measured to quantify the antioxidant defense system in schizophrenia
patients [115,124,130,141,142]; such antioxidants may also, therefore, have a therapeutic effect on
schizophrenia [5,20,143]. Indeed, some antioxidants such as vitamins and essential polyunsaturated
fatty acids have been shown to ameliorate the symptoms of schizophrenia [144–146]. Moreover, several
studies have reported that schizophrenia can be treated with a combination of dietary supplementation,
adjuvant antioxidant therapy, and antipsychotic medication [147,148].

8. Role of Vitamins in Schizophrenia Treatment

Adjuvant treatment including certain vitamins and minerals may have therapeutic benefits against
psychiatric disorders [149,150], and there are viable biological mechanisms by which these molecules
may produce their protective effects [151]. Given that quality of diet is considered a risk factor for
some psychiatric disorders [152,153], it may also be possible to improve symptoms by addressing
patients’ nutritional deficiencies [154]. In particular, schizophrenia patients are known to be more
likely to maintain poor diets. Some preliminary evidence suggests that specific vitamin and mineral
supplements could ameliorate the symptoms of schizophrenia [139].

8.1. Roles of Vitamin E and Vitamin C

Vitamins C and E are the most common antioxidants studied in relation to
schizophrenia [124,155,156]. Schizophrenia patients have been shown to have lower plasma vitamin C
and E levels compared to healthy controls [142]. Moreover, early intervention with these two vitamins,
along with other antioxidants such as beta carotene, could potentially prevent oxidative damage
and exacerbation of symptoms in schizophrenia, as shown by observations of lipid peroxidation
and impaired antioxidant defense [157–159]. However, multiple studies, including 2-week to 2-year
treatment periods, have failed to observe changes in Brief Psychiatric Rating Scale scores with daily
doses of 600–1600 IU vitamin E [160]. Nevertheless, early studies suggest that vitamin E may help treat
tardive dyskinesia, an occasional effect of long-term antipsychotic use [161]. Although a meta-analysis
including 11 randomized clinical trials did not find any credible evidence for vitamin E alleviating
tardive dyskinesia, some studies within the meta-analysis found that vitamin E supplementation
helped prevent further deterioration of tardive dyskinesia [162]; therefore, there may be some benefit
to adding vitamin E as a treatment strategy for schizophrenia [161].

Because vitamin E is lipid soluble, it has limited ability to prevent oxidative damage in the
mitochondria, nucleus, and cytosolic proteins, which is where the majority of ROS are formed [163–166].
Thus, vitamin C, which is water soluble, has also been investigated as a beneficial supplement [167].
However, the adjunctive use of both vitamins in schizophrenia treatment necessitates caution since
over-consumption can result in prooxidant rather than antioxidant effects [124]. The benefits of vitamin
C include safeguarding neurons from OS, ensuring the proper regulation of neurotransmission,
ameliorating inflation, and altering neuronal development and epigenetic function [168–170].
In addition to curtailing membrane phospholipid peroxidation, vitamin C can also enhance the
regeneration of vitamin E [163]. Interestingly, the concentration of vitamin C in the brain is 10-fold
higher than in serum; it can also be retained in the brain after crossing the blood brain barrier
through GLUT1, a glucose transmitter [124]. Patients with schizophrenia have been shown to exhibit
significantly reduced levels of SOD and vitamin C in comparison to healthy controls [171,172]. Therefore,
supplementing with vitamin C is important: it helps maintain appropriate central nervous system (CNS)
functioning, strengthens the antioxidant defense system of the brain [154], and safeguards neuronal
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differentiation and maturation, myelin formation, neurotransmission modulation, and catecholamine
synthesis [173].

In a double-blind placebo-controlled study, 40 schizophrenia patients were split into groups
receiving either vitamin C or a placebo for eight weeks, and both groups were also adjunctly treated
with atypical antipsychotics [174]. While increased levels of serum MDA and reduced levels of plasma
ascorbic acid were typically observed in schizophrenia patients, these levels were significantly reversed
in the group treated with vitamin C relative to the placebo group. After eight weeks, there were also
significantly greater improvements in the Brief Psychiatric Rating Scale (BPRS) scores of the vitamin C
group compared to the placebo group [174]. Thus, oral vitamin C supplementation taken with atypical
antipsychotics may lower OS, increase ascorbic acid levels, and enhance BPRS scores, signifying its
potential as an adjunctive treatment for schizophrenia [174]. In another study, researchers observed that
the intake of vitamin C, vitamin E, and omega-3 fatty acid supplements lowered BPRS and positive and
negative syndrome scale (PANSS) scores in schizophrenia [143]. Studies involving combined treatment
of vitamin E and C or vitamin C treatment alone have shown that these treatments significantly enhance
BPRS scores and reduce total dyskinetic movement scores [124,174]. Both vitamins are nonenzymatic
antioxidants; therefore, they likely reduce OS in schizophrenia by dismantling free-radical chain
reactions [161].

Sources of Vitamin C and Vitamin E

Vitamin C is best obtained through certain fruits and vegetables including oranges, grapefruit,
kiwis, potatoes, tomatoes, broccoli, green and red peppers, cabbage, cauliflower, strawberries, Brussels
sprouts, and cantaloupe [175,176]. Dietary sources of vitamin E include nuts, such as almonds, peanuts,
and hazelnuts; seeds, such as sunflower seeds; and vegetable oils, such as wheat germ oil, soybean oil,
sunflower oil, and corn oil [175]. Vitamin E is also readily found in spinach, broccoli, mango, kiwi,
tomato, and fortified cereals [176].

8.2. Role of Vitamin D

Schizophrenia patients are often deficient in vitamin D, which is known to function in
neurodevelopment and neuroprotection [177–182]. The neuroprotective effects of vitamin D arise
through modulation of neurotrophin production, calcium homeostasis, neuromediator synthesis,
and prevention of oxidative damage [183–185]. A study on schizophrenia risk, which included
424 schizophrenia patients and 424 date of birth and gender matched controls, found that neonatal
vitamin D levels (determined from serum 25-hydroxyvitamin (25(OH)) vitamin D3 levels in the
participants’ dried blood spots gathered during the first year of their lives) influence the odds of
developing schizophrenia; participants in the bottom two quintiles for vitamin D levels had a two-fold
greater risk of schizophrenia compared to participants in all other quintiles [186]. In another study,
in which 25(OH) vitamin D was measured in 20 recent onset schizophrenia patients and 20 matched
controls, lower levels of vitamin D were linked to more severe symptoms and cognitive deficits in
schizophrenia [187]. In a study of 60 patients with chronic schizophrenia, participants received either a
placebo or a 50,000 IU dose of vitamin D3 once every two weeks in addition to daily consumption
of probiotics (8 × 109 CFU) for 12 weeks; the combined treatment of vitamin D and probiotics had a
beneficial impact not only on metabolic profiles but also on total and general PANSS scores [188].

Sources of Vitamin D

Few natural foods are good sources of vitamin D; however, fatty fish, such as tuna, salmon, and
mackerel, as well as fish liver oils, are considered to be optimal sources [175]. Vitamin D is also
available in limited quantities in egg yolks, cheese, and beef liver, primarily via vitamin D3 and 25(OH)
D3 [189]. Some mushrooms offer D2, albeit in inconsistent quantities [190].
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8.3. Role of Vitamin B

Several meta-analyses have shown that schizophrenia patients experience greater folate deficiencies
than their healthy counterparts [191,192]. One study established that intake of fish fat was positively
correlated with folate and vitamin B12 levels in patients with schizophrenia, suggesting that such
patients can experience dietary deficits of key nutrients [193]. Further studies of schizophrenia patients
have examined the potential effects of supplementation with vitamin B6 alone, folate alone, folic acid
with vitamin B12, and folic acid combined with vitamins B12 and B6 [194]. An analysis of seven
randomized-controlled trials that investigated vitamin B supplementation (including 297 individuals
in total) found that it had a significant positive impact on total symptom scores [139]. Moreover,
a 3-month supplementation with vitamin B (400 µg B12, 2 mg folic acid, and 25 mg B6) significantly
lowered PANSS total scores for 42 schizophrenia patients with increased homocysteine levels [139].
In addition, the efficacy of vitamin B supplements had been shown to be significantly related to the
duration of schizophrenia [145,195]: supplementation has a greater reductive effect on symptoms in
the earlier stages of the disorder [139]. Overall, group B vitamin supplements, especially folate and
vitamin B12, appear to improve the general symptoms of schizophrenia [196,197].

Sources of Vitamin B

Sources of folate include dark green leafy vegetables, nuts, fruits, peas, juices, beans, dairy,
seafood, meat, eggs, grains, and poultry [175]. Specifically, folate can be found in foods such as spinach,
rice, brussels sprouts, lettuce, mustard greens, green peas, wheat germ, crab, peanuts, papaya, yeast,
cantaloupe, fish, ground beef, beef liver, black-eyed peas, asparagus, spaghetti, avocado, broccoli,
bread, kidney beans, tomato juice, orange juice, oranges, bananas, eggs, baked beans, milk, and chicken
breast [175]. Many foods are also known to be good sources of vitamin B6 including starchy vegetables,
such as potatoes, non-citrus fruit, fish, fortified cereals, poultry, and organ meats such as beef liver.
Natural sources of vitamin B12 include fish, milk and dairy, poultry, meat, and eggs [175,198,199].
Although plant-based diets are not adequate sources of vitamin B12, vegetarians can obtain this
nutrient through fortified cereals. Vitamin B12 is also found in certain nutritional yeast products [175].

9. Role of Polyunsaturated Fatty Acids in Schizophrenia Treatment

The properties of docosahexaenoic acid (DHA) and omega-3 eicosapentaenoic acid (EPA)
are significant for psychosis-related disorders as they are known to reduce OS by modulating
mitochondria, decreasing microinflammation stress, and enhancing neurotransmission of serotonin
and dopamine [191,200,201]. They can also protect against toxicity due to apoptosis and regulate gene
expression of brain-derived neurotrophic factor [202]. Depletion of polyunsaturated fatty acids (PUFAs)
has been linked to psychosis and cognitive deficits, and it may be associated with the heightened
OS observed in schizophrenia [114,203,204]; on the other hand, similar to EPA and DHA, PUFA
treatment can also prevent OS [160]. Disruption of PUFA metabolism and PUFA deficiencies in red
blood cell (RBC) membranes are frequently observed in schizophrenia patients [161,205,206]. Similarly,
postmortem brain studies have reported lower PUFA levels in schizophrenia patients, particularly
arachidonic acid and DHA [203,207]. Seven randomized clinical trials have been conducted to compare
EPA supplements against placebos in schizophrenia patients being treated with antipsychotics [207].
Among these, the positive effects of EPA on primary efficiency were reported in two studies [207].
According to one study, conducted over 12 weeks with 80 patients, EPA reduced the time until a
response was observed in patients experiencing non-affective psychosis; moreover, the EPA treatment
group showed a 20% reduction in antipsychotic medication use [208].

Omega-3 supplementation is known to substantially improve certain psychopathologies [209–212].
Importantly, combining omega-3 EPUFAs and antioxidants, especially during the nascent stages of
illness when the human brain exhibits considerable neuroplasticity, is potentially more efficacious in
improving long-term clinical outcomes [211]. In schizophrenia, omega-3 fatty acid supplements
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significantly alleviated symptoms in four out of seven randomized clinical trials [54,161,213].
This may be because omega-3 fatty acids contain generous amounts of EPA, which has antioxidant
properties [214–216]. In a specific study of omega-3 supplements in schizophrenia, the nutrient
significantly improved the symptoms of both schizophrenia and tardive dyskinesia [161]. Similarly,
a combination of vitamin E, vitamin C, and omega-3 significantly reduced the severity of positive
and negative symptoms, as well as RBC-SOD levels, in chronic schizophrenia patients over a four
month period [212]. Such reduced RBC-SOD levels indicate that combining antioxidants with omega-3
PUFAs can alleviate many of the symptoms associated with OS; decreased RBC-SOD levels show
that excess SOD production is no longer required to compensate for high ROS concentrations [212].
Correspondingly, in a placebo-controlled randomized clinical trial in which an n-3 PUFA intervention
was tested over 26 weeks with 71 schizophrenia patients (aged 16–35), treatment reduced the severity
of symptoms [217]. In another study, haloperidol treatment was supplemented with omega-3 fatty
acids (1000 mg capsules, 180 mg EPA, 120 mg DHA; taken twice daily), vitamin E (400 IU taken twice
daily), and vitamin C (1000 mg taken daily) in 17 patients with schizophrenia [212]. Over a period of
four months, these patients were measured with the Scale for the Assessment of Negative Symptoms,
Barnes Akathisia Rating Scale, Simpson Angus Scale, and BPRS; in all four assessments, scores in
follow-up visits were significantly lower than baseline scores [212].

Sources of PUFA

Natural sources of the PUFAs EPA and DHA are anchovies, tuna, salmon, and other fatty
fish [176,218]. Alpha-linolenic acid sources include nuts, vegetable oils, leafy vegetables, flaxseeds,
and flaxseed oil [219,220].

10. Role of Antipsychotics

Clinical trials show that antipsychotic medications significantly improve psychotic symptoms
for patients with schizophrenia [221–223]. Atypical antipsychotics may partially normalize ROS
metabolism and oxidative stress [75]. Commonly used antipsychotic drugs include aripiprazole,
brexpiprazole, chlorpromazine, clozapine, lurasidone, and risperidone. At doses recommended for
managing acute episodes, antipsychotic drugs can alter lipid peroxidation product (TBARS) levels in
plasma [75,224].

10.1. Aripiprazole

Aripiprazole is an effective and well-tolerated atypical antipsychotic for patients with
schizophrenia [225–227]. The drug acts as a dopamine D2 and serotonin 5-HT1A receptor agonist and
as a serotonin 5-HT2A receptor antagonist [228,229]. Aripiprazole displays high affinity for serotonin
5-HT1A and 5-HT2A receptors and dopamine D2 and D3 receptors [223]. The drug is unlikely to cause
weight gain, sedation, or other changes in metabolism [226,230–232]. A 52-week trial of 478 patients
with schizophrenia found that intramuscular injections of aripiprazole every four weeks (fixed at either
441 mg or 882 mg) was well-tolerated, making it a suitable treatment for schizophrenia [233]. One
study showed that aripiprazole did not affect levels of a plasma lipid peroxidation marker but did
induce some insignificant prooxidative effects at low doses [75].

10.2. Brexpiprazole

Brexpiprazole is an oral atypical antipsychotic drug with clinical evidence for efficacy in the
treatment of schizophrenia [234–236]. Like aripiprazole, the drug acts as an antagonist of serotonin
5-HT2A receptors and a partial agonist for serotonin 5-HT1A and dopamine D2 receptors [236–240].
Phase 3 clinical trials indicate that 2–4 mg of brexpiprazole per day is effective short-term in reducing
PANSS scores and alleviating symptoms of acute schizophrenia [221,241,242]. An analysis of twelve
clinical trials demonstrated that brexpiprazole was superior to placebo in improving PANSS scores in
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patients with schizophrenia at doses of 1 mg, 2 mg, and 4 mg over six weeks [243]. Brexpiprazole is
well-tolerated and is administered daily [242,244].

10.3. Risperidone

Risperidone is an established treatment that alleviates both positive and negative symptoms
of schizophrenia [245–247]. Fifty-four of 60 patients showed a decrease of 20% or more in PANSS
score after two months of risperidone treatment; the remaining patients showed less reduction [245].
On average, participants gained 0.84 kg of weight during treatment [245]. Other studies found that
risperidone treatment may reduce serum interleukin-6, testosterone, and estradiol levels [246,248]. Also,
30 patients with schizophrenia administered stable doses of risperidone displayed significantly reduced
plasma total antioxidant capacity and increased TBARS levels compared to 30 healthy controls [249].
However, incubating control plasma with risperidone at doses commonly used in treatment produced
no changes in lipid peroxidation [249].

10.4. Lurasidone

Lurasidone is an atypical antipsychotic with high affinity for dopamine D2 receptors, noradrenaline
alpha-2C receptors, and serotonin 5-HT2A, 5-HT1A, and 5HT7 receptors [222,250,251]. A study of
2373 patients with acute schizophrenia found lurasidone was safe and effective, especially with a daily
dose of 80 mg [251]. Lurasidone administered at 40 mg and 80 mg daily in adolescent patients with
schizophrenia in another study found statistically and clinically significant improvement of symptoms
at both doses [252]. Further, lurasidone treatment was linked to significant improvement in PANSS
total scores [253]. Similarly, daily administration of 40–120 mg lurasidone for up to 24 months shows
sustained improvement in PANSS total scores [254]. In general, lurasidone is well-tolerated with
limited impact on weight gain and metabolism [252,253,255].

10.5. Clozapine

Clozapine may be a useful option for controlling symptoms in patients with first-episode
schizophrenia who have not previously received treatment [256–258]. Clozapine is an antagonist
of dopamine D2 and serotonin 5-HT2 receptors [259,260]. The drug was the first antipsychotic to
show efficacy in treatment-resistant schizophrenia and shows the lowest risk of mortality [259–261].
A study of 36 patients indicated improved cognitive function after six months of clozapine treatment,
particularly for verbal fluency and attention [262]. These effects on cognition suggest that clozapine
may improve quality of life and vocational function in patients with schizophrenia [263]. Further,
no significant increases were observed in plasma TBARS levels following clozapine use [264]. Finally,
100 patients with chronic schizophrenia received clozapine or risperidone as treatment [265]. Compared
to risperidone, clozapine had significantly greater antioxidant effects via decreasing lipid peroxidation
and increasing SOD and glutathione levels [265]. These antioxidant properties suggest that clozapine
might be useful in managing negative symptoms [265,266].

10.6. Chlorpromazine

Chlorpromazine is commonly used globally to treat schizophrenia and is often a benchmark for
evaluating alternative treatments for schizophrenia [267–270]. Data also suggest that chlorpromazine
decreases lipid peroxidation by enhancing antioxidant enzyme activity [271,272].

11. Role of Cognitive Therapies

Nutritional and pharmacological treatment alone may be insufficient for managing all symptoms
of schizophrenia, particularly negative symptoms [273]. Cognitive behavioral therapy (CBT) for
psychosis is recommended alongside antipsychotics for managing schizophrenia [274–276]. CBT shows
efficacy for lessening positive and negative symptoms over a 9-month timeframe in patients with
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medication-resistant schizophrenia [274–276]. CBT was also found effective in a study of 90 patients
with schizophrenia for reducing disorganized behavior that disrupts daily routine and function [277].
CBT for patients with schizophrenia additionally decreases violent behavior, substance abuse, and
suicidal ideation, while promoting physical exercise, and participation in the community [274].

Cognitive Enhancement Therapy (CET) focuses on cognitive deficits in schizophrenia, through
rehabilitating cognition [278]. A study of 58 early course patients with schizophrenia over two years
found CET effective [279]. CET also improves retention of employment during the early phases of
schizophrenia by promoting functional recovery [279].

12. Role of Quality of Life

People with schizophrenia typically exhibit a poor quality of life due to their dysfunctional
psychological state and lifestyle circumstances [280]. Significant issues facing people with the condition
include homelessness, lack of access to medical care, poor social skills, low socioeconomic status, and
unemployment [274]. Patients with schizophrenia, starting from onset, generally have low-quality
diets, and nutritional deficiencies [152,281]. A factor that might partially explain this observation
is that people with low socioeconomic status are eight times more likely to develop schizophrenia
than people with higher socioeconomic status [282]. Moreover, nutritional deficiencies are identified
as risk factors for psychiatric disorders [283]. Patients were more likely to have an irregular eating
schedule, eat instant meals, and drink more coffee than controls in a study of 194 subjects [284]. People
with schizophrenia also smoke four more cigarettes per day on average than controls [284]. Finally,
a study of 159 patients with schizophrenia found 41% did not eat fruit daily, 51% ate meals in less than
fifteen minutes, and 63% did not consume fish [285]. Inadequacies in diet and exercise associated with
schizophrenia may partially be due to the disorder’s impact on socioeconomic status as many patients
with schizophrenia are unable to obtain and sustain employment [286].

13. Implications

Pharmaceutical treatment of schizophrenia is currently limited to only a few antipsychotic
medications. Notwithstanding the proven efficacy of these antipsychotics, general outcomes in
schizophrenia are far from optimal. As antipsychotic drug treatment has yet to provide suitable
functional recovery, there remains a need to adopt complementary approaches to treating the disorder.
Therefore, adjunctive treatment options that have proven useful in schizophrenia, such as antioxidant
intake, are highly desirable. The current evidence on the effects of OS in schizophrenia pathophysiology
support antioxidants as a potential therapeutic strategy for this disorder.

14. Conclusions

Schizophrenia is unquestionably an extremely distressing brain disorder. It leads to a number
of behavioral and neurodevelopmental abnormalities, including deficiencies in social functioning,
perception, and processing emotions. The evidence reviewed here suggests that OS is a key component
of schizophrenia’s pathophysiology, likely as a result of an imbalance between prooxidant and
antioxidant molecules within cells and tissues. Evidence also suggests this imbalance is not the result
of antipsychotic drug use; in some cases, antipsychotic medications have been implicated to reduce
oxidative stress. Moreover, cell damage and OS are most typically present in the early stages of
schizophrenia; thus, preemptive treatment with specific diets and nutritional supplements could help
arrest the progression and severity of the disorder. An important consideration to a nutraceutical
approach is that many schizophrenia patients have poor dietary habits, in part due to socioeconomic
factors such as homelessness or unemployment. While many antioxidant treatments have been
reported as efficacious in improving the psychopathology of schizophrenia, vitamins B, C, D, and E,
as well as omega-3 PUFA, have perhaps emerged as the most promising complementary schizophrenia
treatment strategies.
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Evaluation of paraoxonase, arylesterase and malondialdehyde levels in schizophrenia patients taking typical,
atypical and combined antipsychotic treatment. Clin. Psychopharma. Neurosci. 2016, 14, 345–350. [CrossRef]
[PubMed]

24. Collin, F.; Cheignon, C.; Hureau, C. Oxidative stress as a biomarker for alzheimer’s disease. Biomark. Med.
2018, 12, 201–203. [CrossRef]

25. Firth, J.; Teasdale, S.B.; Allott, K.; Siskind, D.; Marx, W.; Cotter, J.; Veronese, N.; Schuch, F.; Smith, L.; Solmi, M.;
et al. The efficacy and safety of nutrient supplements in the treatment of mental disorders: A meta–review of
meta–analyses of randomized controlled trials. World Psychiatry 2019, 18, 308–324. [CrossRef]

26. Do, K.Q.; Conus, P.; Cuenod, M. Redox dysregulation and oxidative stress in schizophrenia: Nutrigenetics as
a challenge in psychiatric disease prevention. In Personalized Nutrition; Simopoulos, A.P., Milner, J.A., Eds.;
Karger: Basel, Switzerland, 2010; Volume 101, pp. 131–153.

27. Jaaro-Peled, H.; Sawa, A. Neurodevelopmental factors in schizophrenia. Psychiatr. Clin. 2020, 43, 263–274.
[CrossRef]

28. Lin, C.-H.; Lane, H.-Y. Early identification and intervention of schizophrenia: Insight from hypotheses of
glutamate dysfunction and oxidative stress. Front. Psychiatry 2019, 10, 93. [CrossRef]

29. Panahi, Y.; Rajaee, S.M.; Johnston, T.P.; Sahebkar, A. Neuroprotective effects of antioxidants in the management
of neurodegenerative disorders: A literature review. J. Cell. Biochem. 2019, 120, 2742–2748. [CrossRef]

30. Do, K.Q.; Cuenod, M.; Hensch, T.K. Targeting Oxidative stress and aberrant critical period plasticity in the
developmental trajectory to schizophrenia. Schizophr. Bull. 2015, 41, 835–846. [CrossRef]

31. Harvey, P.D.; Isner, E.C. Cognition, social cognition, and functional capacity in early—Onset schizophrenia.
Child Adolesc. Psychiatr. Clin. 2020, 29, 171–182. [CrossRef]

32. Zanelli, J.; Mollon, J.; Sandin, S.; Morgan, C.; Dazzan, P.; Pilecka, I.; Marques, T.R.; David, A.; Morgan, K.D.;
Fearon, P.; et al. Cognitive change in schizophrenia and other psychoses in the decade following the first
episode. Am. J. Psychiatry 2019, 176, 811–819. [CrossRef] [PubMed]

33. Chowdari, K.V.; Bamne, M.N.; Nimgaonkar, V.L. Genetic association studies of antioxidant pathway genes
and schizophrenia. Antioxid. Redox Sign. 2011, 15, 2037–2045. [CrossRef] [PubMed]

34. Fischer, E.K.; Drago, A. A molecular pathway analysis stresses the role of inflammation and oxidative stress
towards cognition in schizophrenia. J. Neural Transm. 2017, 124, 765–774. [CrossRef] [PubMed]

35. Zugno, A.I.; Canever, L.; Heylmann, A.S.; Wessler, P.G.; Steckert, A.; Mastella, G.A.; de Oliveira, M.B.;
Damázio, L.S.; Pachec, F.D.; Calixto, O.P.; et al. Effect of folic acid on oxidative stress and behavioral changes
in the animal model of schizophrenia induced by ketamine. J. Psychiatr. Res. 2016, 81, 23–35. [CrossRef]
[PubMed]

36. Hamazaki, K.; Maekawa, M.; Toyota, T.; Dean, B.; Hamazaki, T.; Yoshikawa, T. Fatty acid composition of the
postmortem corpus callosum of patients with schizophrenia, bipolar disorder, or major depressive disorder.
Eur. Psychiatry 2017, 39, 51–56. [CrossRef] [PubMed]

37. van Erp, T.G.; Hibar, D.P.; Rasmussen, J.M.; Glahn, D.C.; Pearlson, G.D.; Andreassen, O.A.; Agartz, I.;
Westlye, L.T.; Haukvik, U.K.; Dale, A.M.; et al. Subcortical brain volume abnormalities in 2028 individuals
with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatry 2016, 21, 547–553.
[CrossRef] [PubMed]

38. Gourion, D.; Gourevitch, R.; Leprovost, J.B.; Olié, H.; Lôo, J.P.; Krebs, M.O. Neurodevelopmental hypothesis
in schizophrenia. Encephale 2004, 30, 109–118. [CrossRef]

39. Guessoum, S.B.; Le Strat, Y.; Dubertret, C.; Mallet, J. A transnosographic approach of negative symptoms
pathophysiology in schizophrenia and depressive disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry
2020, 99, 109862. [CrossRef]

http://dx.doi.org/10.1016/j.psychres.2013.08.035
http://dx.doi.org/10.1016/j.neubiorev.2019.11.024
http://www.ncbi.nlm.nih.gov/pubmed/31794779
http://dx.doi.org/10.1089/ars.2010.3603
http://www.ncbi.nlm.nih.gov/pubmed/21126177
http://dx.doi.org/10.9758/cpn.2016.14.4.345
http://www.ncbi.nlm.nih.gov/pubmed/27776386
http://dx.doi.org/10.2217/bmm-2017-0456
http://dx.doi.org/10.1002/wps.20672
http://dx.doi.org/10.1016/j.psc.2020.02.010
http://dx.doi.org/10.3389/fpsyt.2019.00093
http://dx.doi.org/10.1002/jcb.26536
http://dx.doi.org/10.1093/schbul/sbv065
http://dx.doi.org/10.1016/j.chc.2019.08.008
http://dx.doi.org/10.1176/appi.ajp.2019.18091088
http://www.ncbi.nlm.nih.gov/pubmed/31256609
http://dx.doi.org/10.1089/ars.2010.3508
http://www.ncbi.nlm.nih.gov/pubmed/20673164
http://dx.doi.org/10.1007/s00702-017-1730-y
http://www.ncbi.nlm.nih.gov/pubmed/28477285
http://dx.doi.org/10.1016/j.jpsychires.2016.06.013
http://www.ncbi.nlm.nih.gov/pubmed/27367209
http://dx.doi.org/10.1016/j.eurpsy.2016.05.007
http://www.ncbi.nlm.nih.gov/pubmed/27821355
http://dx.doi.org/10.1038/mp.2015.63
http://www.ncbi.nlm.nih.gov/pubmed/26033243
http://dx.doi.org/10.1016/S0013-7006(04)95421-8
http://dx.doi.org/10.1016/j.pnpbp.2020.109862


Brain Sci. 2020, 10, 742 13 of 24

40. Bulbul, F.; Virit, O.; Alpak, G.; Unal, A.; Bulut, M.; Kaya, M.C.; Altindag, A.; Celik, H.; Savas, H.A.
Are oxidative stress markers useful to distinguish schizoaffective disorder from schizophrenia and bipolar
disorder? Acta Neuropsychiatr. 2014, 26, 120–124. [CrossRef]

41. Gainsford, K.; Fitzgibbon, B.; Fitzgerald, P.B.; Hoy, K.E. Transforming treatments for schizophrenia: Virtual
reality, brain stimulation and social cognition. Psychiatry Res. 2020, 288, 112974. [CrossRef]

42. Humpston, C.S.; Broome, M.R. Thinking, believing, and hallucinating self in schizophrenia. Lancet Psychiatry
2020, 7, 638–646. [CrossRef]

43. Khandaker, G.M.; Dantzer, R. Is there a role for immune–to–brain communication in schizophrenia?
Psychopharmacology 2016, 233, 1559–1573. [CrossRef] [PubMed]

44. Khavari, B.; Cairns, M.J. Epigenomic dysregulation in schizophrenia: In search of disease etiology and
biomarkers. Cells 2020, 9, 1837. [CrossRef] [PubMed]

45. Smeland, O.B.; Frei, O.; Dale, A.M.; Andreassen, O.A. The polygenic architecture of
schizophrenia—Rethinking pathogenesis and nosology. Nat. Rev. Neurol. 2020, 16, 366–379. [CrossRef]
[PubMed]

46. Correll, C.U.; Schooler, N.R. Negative symptoms in schizophrenia: A review and clinical guide for recognition,
assessment, and treatment. Neuropsychiatr. Dis. Treat. 2020, 16, 519–534. [CrossRef]

47. Krug, A.; Stein, F.; Kircher, T. Cognitive disorders in schizophrenia. Nervenarzt 2020, 91, 2–9. [CrossRef]
48. Pu, S.; Nakagome, K.; Itakura, M.; Iwata, M.; Nagata, I.; Kaneko, K. The association between cognitive

deficits and prefrontal hemodynamic responses during performance of working memory task in patients
with schizophrenia. Schizophr. Res. 2016, 172, 114–122. [CrossRef]

49. Wright, S.; Kochunov, P.; Chiappelli, J.; McMahon, R.; Muellerklein, F.; Wijtenburg, S.A.; White, M.G.;
Rowland, L.M.; Hong, E. Accelerated white matter aging in schizophrenia: Role of white matter blood
perfusion. Neurobiol. Aging 2014, 35, 2411–2418. [CrossRef]

50. Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The role of oxidative stress in neurodegenerative diseases.
Exp. Neurobiol. 2015, 24, 325–340. [CrossRef]

51. Salim, S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther. 2017, 360, 201–205.
[CrossRef]

52. Sbodio, J.I.; Snyder, S.H.; Paul, B.D. Redox mechanisms in neurodegeneration: From disease outcomes to
therapeutic opportunities. Antioxid. Redox Sign. 2019, 30, 1450–1499. [CrossRef] [PubMed]

53. Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; de Bittencourt, P.I.H. Molecular mechanisms of ROS
production and oxidative stress in diabetes. Biochem. J. 2016, 473, 4527–4550. [CrossRef] [PubMed]

54. Okusaga, O.O. Accelerated aging in schizophrenia patients: The potential role of oxidative stress. Aging Dis.
2014, 5, 256–262. [PubMed]

55. Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A.
Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763.
[CrossRef] [PubMed]

56. Lu, J.; Wang, Z.; Cao, J.; Chen, Y.; Dong, Y. A novel and compact review on the role of oxidative stress in
female reproduction. Reprod. Biol. Endocrinol. 2018, 16, 80. [CrossRef] [PubMed]

57. Nita, M.; Grzybowski, A. The role of the reactive oxygen species and oxidative stress in the pathomechanism
of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults.
Oxid. Med. Cell. Longev. 2016, 2016, 3164734. [CrossRef] [PubMed]

58. Collin, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases.
Int. J. Mol. Sci. 2019, 20, 2407. [CrossRef]

59. Kawamura, T.; Muraoka, I. Exercise–induced oxidative stress and the effects of antioxidant intake from a
physiological viewpoint. Antioxidants 2018, 7, 119. [CrossRef]

60. Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Chakraborty, S.; Dhama, K. Oxidative
stress, prooxidants, and antioxidants: The interplay. BioMed Res. Int. 2014, 2014, 761264. [CrossRef]

61. Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases.
Molecules 2019, 24, 1583. [CrossRef]

62. Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage
and regulating ROS signaling. J. Cell. Biol. 2018, 217, 1915–1928. [CrossRef] [PubMed]

63. Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS
release. Physiol. Rev. 2014, 94, 909–950. [CrossRef]

http://dx.doi.org/10.1017/neu.2013.44
http://dx.doi.org/10.1016/j.psychres.2020.112974
http://dx.doi.org/10.1016/S2215-0366(20)30007-9
http://dx.doi.org/10.1007/s00213-015-3975-1
http://www.ncbi.nlm.nih.gov/pubmed/26037944
http://dx.doi.org/10.3390/cells9081837
http://www.ncbi.nlm.nih.gov/pubmed/32764320
http://dx.doi.org/10.1038/s41582-020-0364-0
http://www.ncbi.nlm.nih.gov/pubmed/32528109
http://dx.doi.org/10.2147/NDT.S225643
http://dx.doi.org/10.1007/s00115-019-00809-8
http://dx.doi.org/10.1016/j.schres.2016.01.045
http://dx.doi.org/10.1016/j.neurobiolaging.2014.02.016
http://dx.doi.org/10.5607/en.2015.24.4.325
http://dx.doi.org/10.1124/jpet.116.237503
http://dx.doi.org/10.1089/ars.2017.7321
http://www.ncbi.nlm.nih.gov/pubmed/29634350
http://dx.doi.org/10.1042/BCJ20160503C
http://www.ncbi.nlm.nih.gov/pubmed/27941030
http://www.ncbi.nlm.nih.gov/pubmed/25110609
http://dx.doi.org/10.1155/2017/8416763
http://www.ncbi.nlm.nih.gov/pubmed/28819546
http://dx.doi.org/10.1186/s12958-018-0391-5
http://www.ncbi.nlm.nih.gov/pubmed/30126412
http://dx.doi.org/10.1155/2016/3164734
http://www.ncbi.nlm.nih.gov/pubmed/26881021
http://dx.doi.org/10.3390/ijms20102407
http://dx.doi.org/10.3390/antiox7090119
http://dx.doi.org/10.1155/2014/761264
http://dx.doi.org/10.3390/molecules24081583
http://dx.doi.org/10.1083/jcb.201708007
http://www.ncbi.nlm.nih.gov/pubmed/29669742
http://dx.doi.org/10.1152/physrev.00026.2013


Brain Sci. 2020, 10, 742 14 of 24

64. Bolisetty, S.; Jaimes, E.A. Mitochondria and reactive oxygen species: Physiology and pathophysiology. Int. J.
Mol. Sci. 2013, 14, 6306–6344. [CrossRef] [PubMed]

65. Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers
during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [CrossRef]

66. Bai, Z.; Li, X.; Chen, G.; Du, Y.; Wei, Z.; Chen, X.; Zheng, G.; Deng, W.; Cheng, Y. Serum oxidative stress
marker levels in unmedicated and medicated patients with schizophrenia. J. Mol. Neurosci. 2018, 66, 428–436.
[CrossRef] [PubMed]

67. Chittiprol, S.; Venkatasubramanian, G.; Neelakantachar, N.; Babu, S.V.; Reddy, N.A.; Shetty, K.T.;
Gangadhar, B.N. Oxidative stress and neopterin abnormalities in schizophrenia: A longitudinal study.
J. Psychiatr. Res. 2010, 44, 310–313. [CrossRef] [PubMed]

68. Sarandol, A.; Kirli, S.; Akkaya, C.; Altin, A.; Demirci, M.; Sarandol, E. Oxidative–antioxidative systems and
their relation with serum S100 B levels in patients with schizophrenia: Effects of short term antipsychotic
treatment. Prog. Neuro–Psychopharmacol. Biol. Psychiatry 2007, 31, 1164–1169. [CrossRef] [PubMed]

69. Alvarez-Arellano, L.; González-García, N.; Salazar-García, M.; Corona, J.C. Antioxidants as a potential target
against inflammation and oxidative stress in attention-deficit/hyperactivity disorder. Antioxidants 2020, 9, 176.
[CrossRef]

70. Leza, J.C.; García–Bueno, B.; Bioque, M.; Arango, C.; Parellada, M.; Do, K.; O’Donnell, P.; Bernardo, M.
Inflammation in schizophrenia: A question of balance. Neurosci. Biobehav. Rev. 2015, 55, 612–626. [CrossRef]

71. Muller, N. Inflammation in schizophrenia: Pathogenetic aspects and therapeutic considerations.
Schizophr. Bull. 2018, 44, 973–982. [CrossRef]

72. Mehta, V.; Desai, N.; Perwez, A.; Nemade, D.; Dawoodi, S.; Zaman, S.B. ACE alzheimer’s: The role of vitamin
A, C and E (ACE) in oxidative stress induced alzheimer’s disease. J. Med. Res. Innov. 2018, 2. [CrossRef]

73. Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative
defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [CrossRef]

74. He, Q.; You, Y.; Yu, L.; Yao, L.; Lu, H.; Zhou, X.; Wu, S.; Chen, L.; Chen, Y.; Zhao, X. Uric acid levels in subjects
with schizophrenia: A systematic review and meta-analysis. Psychiatry Res. 2020, 292, 113305. [CrossRef]
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